Automated fetal brain extraction from clinical ultrasound volumes using 3D convolutional neural networks
To improve the performance of most neuroimage analysis pipelines, brain extraction is used as a fundamental first step in the image processing. However, in the case of fetal brain development for routing clinical assessment, there is a need for a reliable Ultrasound (US)-specific tool. In this work...
Autori principali: | Moser, F, Huang, R, Papageorghiou, AT, Papiez, B, Namburete, AIL |
---|---|
Natura: | Journal article |
Lingua: | English |
Pubblicazione: |
Medical Image Understanding and Analysis
2020
|
Documenti analoghi
Documenti analoghi
-
BEAN: brain extraction and alignment network for 3D fetal neurosonography
di: Moser, F, et al.
Pubblicazione: (2022) -
Self-supervised ultrasound to MRI fetal brain image synthesis
di: Jiao, J, et al.
Pubblicazione: (2020) -
Multi-task CNN for structural semantic segmentation in 3D fetal brain ultrasound
di: Venturini, L, et al.
Pubblicazione: (2020) -
Multi-channel groupwise registration to construct an ultrasound-specific fetal brain atlas
di: Namburete, A, et al.
Pubblicazione: (2018) -
Subcortical segmentation of the fetal brain in 3D ultrasound using deep learning
di: Hesse, LS, et al.
Pubblicazione: (2022)