GENERALIZED HOLLEY-PRESTON INEQUALITIES ON MEASURE-SPACES AND THEIR PRODUCTS

It is shown that if (X, ℱ μ) is a product of totally ordered measure spaces and fj (j=1,2,3,4) are measurable non-negative functions on X satisfying f1(x)f2(y)≦f3(x∨y)f4(x∧y), where (∨, ∧) are the lattice operations on X, then (∫f1 dμ)(∫f2 dμ)≦(∫f3 dμ)(∫f4 dμ). This generalises results of Ahlswede a...

Полное описание

Библиографические подробности
Главные авторы: Batty, C, Bollmann, H
Формат: Journal article
Язык:English
Опубликовано: Springer-Verlag 1980

Схожие документы