GENERALIZED HOLLEY-PRESTON INEQUALITIES ON MEASURE-SPACES AND THEIR PRODUCTS
It is shown that if (X, ℱ μ) is a product of totally ordered measure spaces and fj (j=1,2,3,4) are measurable non-negative functions on X satisfying f1(x)f2(y)≦f3(x∨y)f4(x∧y), where (∨, ∧) are the lattice operations on X, then (∫f1 dμ)(∫f2 dμ)≦(∫f3 dμ)(∫f4 dμ). This generalises results of Ahlswede a...
Main Authors: | Batty, C, Bollmann, H |
---|---|
Formato: | Journal article |
Idioma: | English |
Publicado: |
Springer-Verlag
1980
|
Títulos similares
-
EXTENSION OF AN INEQUALITY OF R HOLLEY
por: Batty, C
Publicado: (1976) -
Holley carburetors/
por: 255975 Urich, Mike
Publicado: (1972) -
Dead on : a Marcus Rydell, Kat Holley PI thriller /
por: Walker, Robert W. (Robert Wayne), 1948-
Publicado: (2009) -
Harris College, Preston
por: Great Britain. Department of Education and Science
Publicado: (1966) -
Entretien avec Marie Preston
por: Roxanne Camus, et al.
Publicado: (2019-10-01)