Using a min-cut generalisation to go beyond Boolean surjective VCSPs

In this work, we first study a natural generalisation of the Min-Cut problem, where a graph is augmented by a superadditive set function defined on its vertex subsets. The goal is to select a vertex subset such that the weight of the induced cut plus the set function value are minimised. In addition...

全面介绍

书目详细资料
Main Authors: Matl, G, Zivny, S
格式: Journal article
语言:English
出版: Springer 2020
实物特征
总结:In this work, we first study a natural generalisation of the Min-Cut problem, where a graph is augmented by a superadditive set function defined on its vertex subsets. The goal is to select a vertex subset such that the weight of the induced cut plus the set function value are minimised. In addition, a lower and upper bound is imposed on the solution size. We present a polynomial-time algorithm for enumerating all near-optimal solutions of this Bounded Generalised Min-Cut problem. Second, we apply this novel algorithm to surjective general-valued constraint satisfaction problems (VCSPs), i.e., VCSPs in which each label has to be used at least once. On the Boolean domain, Fulla, Uppman, and Živný (ACM ToCT’18) have recently established a complete classification of surjective VCSPs based on an unbounded version of the Generalised Min-Cut problem. Their result features the discovery of a new non-trivial tractable case called EDS that does not appear in the non-surjective setting. As our main result, we extend the class EDS to arbitrary finite domains and provide a conditional complexity classification for surjective VCSPs of this type based on a reduction to smaller domains. On three-element domains, this leads to a complete classification of such VCSPs.