Finite element approximation of elliptic homogenization problems in nondivergence-form

We use uniform W2,p estimates to obtain corrector results for periodic homogenization problems of the form A(x/ε) : D2uε = f subject to a homogeneous Dirichlet boundary condition. We propose and rigorously analyze a numerical scheme based on finite element approximations for such nondivergence-form...

Full description

Bibliographic Details
Main Authors: Capdeboscq, Y, Sprekeler, T, Süli, E
Format: Journal article
Language:English
Published: EDP Sciences 2020
_version_ 1797076459418812416
author Capdeboscq, Y
Sprekeler, T
Süli, E
author_facet Capdeboscq, Y
Sprekeler, T
Süli, E
author_sort Capdeboscq, Y
collection OXFORD
description We use uniform W2,p estimates to obtain corrector results for periodic homogenization problems of the form A(x/ε) : D2uε = f subject to a homogeneous Dirichlet boundary condition. We propose and rigorously analyze a numerical scheme based on finite element approximations for such nondivergence-form homogenization problems. The second part of the paper focuses on the approximation of the corrector and numerical homogenization for the case of nonuniformly oscillating coefficients. Numerical experiments demonstrate the performance of the scheme.
first_indexed 2024-03-07T00:04:05Z
format Journal article
id oxford-uuid:76f3da12-91d8-4eac-afa5-df42d04dff1d
institution University of Oxford
language English
last_indexed 2024-03-07T00:04:05Z
publishDate 2020
publisher EDP Sciences
record_format dspace
spelling oxford-uuid:76f3da12-91d8-4eac-afa5-df42d04dff1d2022-03-26T20:19:54ZFinite element approximation of elliptic homogenization problems in nondivergence-formJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:76f3da12-91d8-4eac-afa5-df42d04dff1dEnglishSymplectic Elements at OxfordEDP Sciences2020Capdeboscq, YSprekeler, TSüli, EWe use uniform W2,p estimates to obtain corrector results for periodic homogenization problems of the form A(x/ε) : D2uε = f subject to a homogeneous Dirichlet boundary condition. We propose and rigorously analyze a numerical scheme based on finite element approximations for such nondivergence-form homogenization problems. The second part of the paper focuses on the approximation of the corrector and numerical homogenization for the case of nonuniformly oscillating coefficients. Numerical experiments demonstrate the performance of the scheme.
spellingShingle Capdeboscq, Y
Sprekeler, T
Süli, E
Finite element approximation of elliptic homogenization problems in nondivergence-form
title Finite element approximation of elliptic homogenization problems in nondivergence-form
title_full Finite element approximation of elliptic homogenization problems in nondivergence-form
title_fullStr Finite element approximation of elliptic homogenization problems in nondivergence-form
title_full_unstemmed Finite element approximation of elliptic homogenization problems in nondivergence-form
title_short Finite element approximation of elliptic homogenization problems in nondivergence-form
title_sort finite element approximation of elliptic homogenization problems in nondivergence form
work_keys_str_mv AT capdeboscqy finiteelementapproximationofelliptichomogenizationproblemsinnondivergenceform
AT sprekelert finiteelementapproximationofelliptichomogenizationproblemsinnondivergenceform
AT sulie finiteelementapproximationofelliptichomogenizationproblemsinnondivergenceform