Finite element approximation of elliptic homogenization problems in nondivergence-form
We use uniform W2,p estimates to obtain corrector results for periodic homogenization problems of the form A(x/ε) : D2uε = f subject to a homogeneous Dirichlet boundary condition. We propose and rigorously analyze a numerical scheme based on finite element approximations for such nondivergence-form...
Hlavní autoři: | Capdeboscq, Y, Sprekeler, T, Süli, E |
---|---|
Médium: | Journal article |
Jazyk: | English |
Vydáno: |
EDP Sciences
2020
|
Podobné jednotky
-
Finite element approximation of elliptic homogenization problems in nondivergence-form
Autor: Sprekeler, T
Vydáno: (2021) -
Discontinuous Galerkin finite element approximation of nondivergence form elliptic equations with Cordès coefficients
Autor: Smears, I, a další
Vydáno: (2013) -
Quantitative Stochastic Homogenization of Elliptic Equations in Nondivergence Form
Autor: Armstrong, Scott N., a další
Vydáno: (2016) -
Mixed finite element approximation of periodic Hamilton--Jacobi--Bellman problems with application to numerical homogenization
Autor: Gallistl, D, a další
Vydáno: (2021) -
Estimates for the Multiplicative Square Function of Solutions to Nondivergence Elliptic Equations
Autor: Jorge Rivera-Noriega
Vydáno: (2007-01-01)