Finite element approximation of elliptic homogenization problems in nondivergence-form
We use uniform W2,p estimates to obtain corrector results for periodic homogenization problems of the form A(x/ε) : D2uε = f subject to a homogeneous Dirichlet boundary condition. We propose and rigorously analyze a numerical scheme based on finite element approximations for such nondivergence-form...
Main Authors: | Capdeboscq, Y, Sprekeler, T, Süli, E |
---|---|
Format: | Journal article |
Sprog: | English |
Udgivet: |
EDP Sciences
2020
|
Lignende værker
-
Finite element approximation of elliptic homogenization problems in nondivergence-form
af: Sprekeler, T
Udgivet: (2021) -
Discontinuous Galerkin finite element approximation of nondivergence form elliptic equations with Cordès coefficients
af: Smears, I, et al.
Udgivet: (2013) -
Quantitative Stochastic Homogenization of Elliptic Equations in Nondivergence Form
af: Armstrong, Scott N., et al.
Udgivet: (2016) -
Mixed finite element approximation of periodic Hamilton--Jacobi--Bellman problems with application to numerical homogenization
af: Gallistl, D, et al.
Udgivet: (2021) -
Estimates for the Multiplicative Square Function of Solutions to Nondivergence Elliptic Equations
af: Jorge Rivera-Noriega
Udgivet: (2007-01-01)