Invariance principles for homogeneous sums: Universality of Gaussian Wiener chaos

We compute explicit bounds in the normal and chi-square approximations of multilinear homogenous sums (of arbitrary order) of general centered independent random variables with unit variance. In particular, we show that chaotic random variables enjoy the following form of universality: (a) the norma...

पूर्ण विवरण

ग्रंथसूची विवरण
मुख्य लेखकों: Nourdin, I, Peccati, G, Reinert, G
स्वरूप: Journal article
भाषा:English
प्रकाशित: 2009
_version_ 1826279810366701568
author Nourdin, I
Peccati, G
Reinert, G
author_facet Nourdin, I
Peccati, G
Reinert, G
author_sort Nourdin, I
collection OXFORD
description We compute explicit bounds in the normal and chi-square approximations of multilinear homogenous sums (of arbitrary order) of general centered independent random variables with unit variance. In particular, we show that chaotic random variables enjoy the following form of universality: (a) the normal and chi-square approximations of any homogenous sum can be completely characterized and assessed by first switching to its Wiener chaos counterpart, and (b) the simple upper bounds and convergence criteria available on the Wiener chaos extend almost verbatim to the class of homogeneous sums.
first_indexed 2024-03-07T00:04:21Z
format Journal article
id oxford-uuid:7708c1b7-e64a-47fb-aec6-76e44cbeb2e7
institution University of Oxford
language English
last_indexed 2024-03-07T00:04:21Z
publishDate 2009
record_format dspace
spelling oxford-uuid:7708c1b7-e64a-47fb-aec6-76e44cbeb2e72022-03-26T20:20:37ZInvariance principles for homogeneous sums: Universality of Gaussian Wiener chaosJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:7708c1b7-e64a-47fb-aec6-76e44cbeb2e7EnglishSymplectic Elements at Oxford2009Nourdin, IPeccati, GReinert, GWe compute explicit bounds in the normal and chi-square approximations of multilinear homogenous sums (of arbitrary order) of general centered independent random variables with unit variance. In particular, we show that chaotic random variables enjoy the following form of universality: (a) the normal and chi-square approximations of any homogenous sum can be completely characterized and assessed by first switching to its Wiener chaos counterpart, and (b) the simple upper bounds and convergence criteria available on the Wiener chaos extend almost verbatim to the class of homogeneous sums.
spellingShingle Nourdin, I
Peccati, G
Reinert, G
Invariance principles for homogeneous sums: Universality of Gaussian Wiener chaos
title Invariance principles for homogeneous sums: Universality of Gaussian Wiener chaos
title_full Invariance principles for homogeneous sums: Universality of Gaussian Wiener chaos
title_fullStr Invariance principles for homogeneous sums: Universality of Gaussian Wiener chaos
title_full_unstemmed Invariance principles for homogeneous sums: Universality of Gaussian Wiener chaos
title_short Invariance principles for homogeneous sums: Universality of Gaussian Wiener chaos
title_sort invariance principles for homogeneous sums universality of gaussian wiener chaos
work_keys_str_mv AT nourdini invarianceprinciplesforhomogeneoussumsuniversalityofgaussianwienerchaos
AT peccatig invarianceprinciplesforhomogeneoussumsuniversalityofgaussianwienerchaos
AT reinertg invarianceprinciplesforhomogeneoussumsuniversalityofgaussianwienerchaos