Invariance principles for homogeneous sums: Universality of Gaussian Wiener chaos
We compute explicit bounds in the normal and chi-square approximations of multilinear homogenous sums (of arbitrary order) of general centered independent random variables with unit variance. In particular, we show that chaotic random variables enjoy the following form of universality: (a) the norma...
Auteurs principaux: | Nourdin, I, Peccati, G, Reinert, G |
---|---|
Format: | Journal article |
Langue: | English |
Publié: |
2009
|
Documents similaires
-
Second order Poincaré inequalities and CLTs on Wiener space
par: Nourdin, I, et autres
Publié: (2008) -
On the Wiener chaos expansion of the signature of a Gaussian process
par: Cass, T, et autres
Publié: (2024) -
Stein's method and stochastic analysis of Rademacher functionals
par: Nourdin, I, et autres
Publié: (2008) -
N-term Wiener chaos approximation rates for elliptic PDEs with lognormal Gaussian random inputs
par: Hoang, Viet Ha., et autres
Publié: (2014) -
Stochastic Boundary Value Problems via Wiener Chaos Expansion
par: George Kanakoudis, et autres
Publié: (2023-04-01)