Invariance principles for homogeneous sums: Universality of Gaussian Wiener chaos
We compute explicit bounds in the normal and chi-square approximations of multilinear homogenous sums (of arbitrary order) of general centered independent random variables with unit variance. In particular, we show that chaotic random variables enjoy the following form of universality: (a) the norma...
主要な著者: | Nourdin, I, Peccati, G, Reinert, G |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
2009
|
類似資料
-
Second order Poincaré inequalities and CLTs on Wiener space
著者:: Nourdin, I, 等
出版事項: (2008) -
On the Wiener chaos expansion of the signature of a Gaussian process
著者:: Cass, T, 等
出版事項: (2024) -
Stein's method and stochastic analysis of Rademacher functionals
著者:: Nourdin, I, 等
出版事項: (2008) -
N-term Wiener chaos approximation rates for elliptic PDEs with lognormal Gaussian random inputs
著者:: Hoang, Viet Ha., 等
出版事項: (2014) -
Stochastic Boundary Value Problems via Wiener Chaos Expansion
著者:: George Kanakoudis, 等
出版事項: (2023-04-01)