Invariance principles for homogeneous sums: Universality of Gaussian Wiener chaos
We compute explicit bounds in the normal and chi-square approximations of multilinear homogenous sums (of arbitrary order) of general centered independent random variables with unit variance. In particular, we show that chaotic random variables enjoy the following form of universality: (a) the norma...
Hoofdauteurs: | Nourdin, I, Peccati, G, Reinert, G |
---|---|
Formaat: | Journal article |
Taal: | English |
Gepubliceerd in: |
2009
|
Gelijkaardige items
-
Second order Poincaré inequalities and CLTs on Wiener space
door: Nourdin, I, et al.
Gepubliceerd in: (2008) -
On the Wiener chaos expansion of the signature of a Gaussian process
door: Cass, T, et al.
Gepubliceerd in: (2024) -
Stein's method and stochastic analysis of Rademacher functionals
door: Nourdin, I, et al.
Gepubliceerd in: (2008) -
N-term Wiener chaos approximation rates for elliptic PDEs with lognormal Gaussian random inputs
door: Hoang, Viet Ha., et al.
Gepubliceerd in: (2014) -
Stochastic Boundary Value Problems via Wiener Chaos Expansion
door: George Kanakoudis, et al.
Gepubliceerd in: (2023-04-01)