Invariance principles for homogeneous sums: Universality of Gaussian Wiener chaos
We compute explicit bounds in the normal and chi-square approximations of multilinear homogenous sums (of arbitrary order) of general centered independent random variables with unit variance. In particular, we show that chaotic random variables enjoy the following form of universality: (a) the norma...
Asıl Yazarlar: | Nourdin, I, Peccati, G, Reinert, G |
---|---|
Materyal Türü: | Journal article |
Dil: | English |
Baskı/Yayın Bilgisi: |
2009
|
Benzer Materyaller
-
Second order Poincaré inequalities and CLTs on Wiener space
Yazar:: Nourdin, I, ve diğerleri
Baskı/Yayın Bilgisi: (2008) -
On the Wiener chaos expansion of the signature of a Gaussian process
Yazar:: Cass, T, ve diğerleri
Baskı/Yayın Bilgisi: (2024) -
Stein's method and stochastic analysis of Rademacher functionals
Yazar:: Nourdin, I, ve diğerleri
Baskı/Yayın Bilgisi: (2008) -
N-term Wiener chaos approximation rates for elliptic PDEs with lognormal Gaussian random inputs
Yazar:: Hoang, Viet Ha., ve diğerleri
Baskı/Yayın Bilgisi: (2014) -
Stochastic Boundary Value Problems via Wiener Chaos Expansion
Yazar:: George Kanakoudis, ve diğerleri
Baskı/Yayın Bilgisi: (2023-04-01)