Identifiability analysis for stochastic differential equation models in systems biology
Mathematical models are routinely calibrated to experimental data, with goals ranging from building predictive models to quantifying parameters that cannot be measured. Whether or not reliable parameter estimates are obtainable from the available data can easily be overlooked. Such issues of paramet...
Những tác giả chính: | Browning, AP, Warne, DJ, Burrage, K, Baker, RE, Simpson, MJ |
---|---|
Định dạng: | Journal article |
Ngôn ngữ: | English |
Được phát hành: |
Royal Society
2020
|
Những quyển sách tương tự
-
Parameter identifiability and model selection for sigmoid population growth models
Bằng: Simpson, MJ, et al.
Được phát hành: (2021) -
Rapid Bayesian inference for expensive stochastic models
Bằng: Warne, DJ, et al.
Được phát hành: (2021) -
Efficient inference and identifiability analysis for differential equation models with random parameters
Bằng: Browning, AP, et al.
Được phát hành: (2022) -
A practical guide to pseudo-marginal methods for computational inference in systems biology
Bằng: Warne, DJ, et al.
Được phát hành: (2020) -
Learning differential equation models from stochastic agent-based model simulations
Bằng: Nardini, JT, et al.
Được phát hành: (2021)