On the road: route proposal from radar self-supervised by fuzzy LiDAR traversability
This is motivated by a requirement for robust, autonomy-enabling scene understanding in unknown environments. In the method proposed in this paper, discriminative machine-learning approaches are applied to infer traversability and predict routes from Frequency-Modulated Contunuous-Wave (FMCV) radar...
Hauptverfasser: | Broome, M, Gadd, M, De Martini, D, Newman, P |
---|---|
Format: | Journal article |
Sprache: | English |
Veröffentlicht: |
MDPI
2020
|
Ähnliche Einträge
Ähnliche Einträge
-
On the Road: Route Proposal from Radar Self-Supervised by Fuzzy LiDAR Traversability
von: Michael Broome, et al.
Veröffentlicht: (2020-12-01) -
Knowledge Distillation for Traversable Region Detection of LiDAR Scan in Off-Road Environments
von: Nahyeong Kim, et al.
Veröffentlicht: (2023-12-01) -
BoxGraph: semantic place recognition and pose estimation from 3D LiDAR
von: Pramatarov, G, et al.
Veröffentlicht: (2021) -
LiDAR lateral localisation despite challenging occlusion from traffic
von: Suleymanov, T, et al.
Veröffentlicht: (2020) -
That's my point: compact object-centric LiDAR pose estimation for large-scale outdoor localisation
von: Pramatarov, G, et al.
Veröffentlicht: (2024)