Topological chaos in inviscid and viscous mixers

Topological chaos may be used to generate highly effective laminar mixing in a simple batch stirring device. Boyland, Aref and Stremler (2000) have computed a material stretch rate that holds in a chaotic flow, provided it has appropriate topological properties, irrespective of the details of the fl...

Full description

Bibliographic Details
Main Authors: Finn, MD, Cox, S, Byrne, H
Format: Journal article
Language:English
Published: 2003
Description
Summary:Topological chaos may be used to generate highly effective laminar mixing in a simple batch stirring device. Boyland, Aref and Stremler (2000) have computed a material stretch rate that holds in a chaotic flow, provided it has appropriate topological properties, irrespective of the details of the flow. Their theoretical approach, while widely applicable, cannot predict the size of the region in which this stretch rate is achieved. Here, we present numerical simulations to support the observation of Boyland et al. that the region of high stretch is comparable with that through which the stirring elements move during operation of the device. We describe a fast technique for computing the velocity field for either inviscid, irrotational or highly viscous flow, which enables accurate numerical simulation of dye advection. We calculate material stretch rates, and find close agreement with those of Boyland et al., irrespective of whether the fluid is modelled as inviscid or viscous, even though there are significant differences between the flow fields generated in the two cases.