Learning with opponent-learning awareness
Multi-agent settings are quickly gathering importance in machine learning. This includes a plethora of recent work on deep multi-agent reinforcement learning, but also can be extended to hierarchical reinforcement learning, generative adversarial networks and decentralised optimization. In all these...
Asıl Yazarlar: | Foerster, J, Chen, R, Al-Shedivat, M, Whiteson, S, Abbeel, P, Mordatch, I |
---|---|
Materyal Türü: | Conference item |
Baskı/Yayın Bilgisi: |
International Foundation for Autonomous
Agents and Multiagent Systems
2018
|
Benzer Materyaller
-
Stable opponent shaping in differentiable games
Yazar:: Letcher, A, ve diğerleri
Baskı/Yayın Bilgisi: (2019) -
Evolutionary dynamics of networked multi-person games: mixing opponent-aware and opponent-independent strategy decisions
Yazar:: Feng Huang, ve diğerleri
Baskı/Yayın Bilgisi: (2019-01-01) -
Deep learning with intelligent opponent in fencing
Yazar:: Loh, Qiao Yan
Baskı/Yayın Bilgisi: (2022) -
Learning to play against any mixture of opponents
Yazar:: Max Olan Smith, ve diğerleri
Baskı/Yayın Bilgisi: (2023-07-01) -
A baseline for any order gradient estimation in stochastic computation graphs
Yazar:: Mao, J, ve diğerleri
Baskı/Yayın Bilgisi: (2019)