Learning with opponent-learning awareness
Multi-agent settings are quickly gathering importance in machine learning. This includes a plethora of recent work on deep multi-agent reinforcement learning, but also can be extended to hierarchical reinforcement learning, generative adversarial networks and decentralised optimization. In all these...
Những tác giả chính: | Foerster, J, Chen, R, Al-Shedivat, M, Whiteson, S, Abbeel, P, Mordatch, I |
---|---|
Định dạng: | Conference item |
Được phát hành: |
International Foundation for Autonomous
Agents and Multiagent Systems
2018
|
Những quyển sách tương tự
-
Stable opponent shaping in differentiable games
Bằng: Letcher, A, et al.
Được phát hành: (2019) -
Evolutionary dynamics of networked multi-person games: mixing opponent-aware and opponent-independent strategy decisions
Bằng: Feng Huang, et al.
Được phát hành: (2019-01-01) -
Deep learning with intelligent opponent in fencing
Bằng: Loh, Qiao Yan
Được phát hành: (2022) -
Learning to play against any mixture of opponents
Bằng: Max Olan Smith, et al.
Được phát hành: (2023-07-01) -
A baseline for any order gradient estimation in stochastic computation graphs
Bằng: Mao, J, et al.
Được phát hành: (2019)