A Constrained Approach to Multiscale Stochastic Simulation of Chemically Reacting Systems

Stochastic simulation of coupled chemical reactions is often computationally intensive, especially if a chemical system contains reactions occurring on different time scales. In this paper we introduce a multiscale methodology suitable to address this problem. It is based on the Conditional Stochast...

وصف كامل

التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Cotter, S, Zygalakis, K, Kevrekidis, I, Erban, R
التنسيق: Journal article
منشور في: 2011
الوصف
الملخص:Stochastic simulation of coupled chemical reactions is often computationally intensive, especially if a chemical system contains reactions occurring on different time scales. In this paper we introduce a multiscale methodology suitable to address this problem. It is based on the Conditional Stochastic Simulation Algorithm (CSSA) which samples from the conditional distribution of the suitably defined fast variables, given values for the slow variables. In the Constrained Multiscale Algorithm (CMA) a single realization of the CSSA is then used for each value of the slow variable to approximate the effective drift and diffusion terms, in a similar manner to the constrained mean-force computations in other applications such as molecular dynamics. We then show how using the ensuing Stochastic Differential Equation (SDE) approximation, we can in turn approximate average switching times in stochastic chemical systems.