Gate voltage effects in capacitively coupled quantum dots
We study a system of two symmetrical capacitively coupled quantum dots, each coupled to its own metallic lead, focusing on its evolution as a function of the gate voltage applied to each dot. Using the numerical renormalization group and poor man's scaling techniques, the low-energy Kondo scale...
Principais autores: | , , |
---|---|
Formato: | Journal article |
Idioma: | English |
Publicado em: |
2006
|
Resumo: | We study a system of two symmetrical capacitively coupled quantum dots, each coupled to its own metallic lead, focusing on its evolution as a function of the gate voltage applied to each dot. Using the numerical renormalization group and poor man's scaling techniques, the low-energy Kondo scale of the model is shown to vary significantly with the gate voltage, being exponentially small when spin and pseudospin degrees of freedom dominate; but increasing to much larger values when the gate voltage is tuned close to the edges of the Coulomb blockade staircase where low-energy charge-fluctuations also enter, leading thereby to correlated electron physics on energy/temperature scales more accessible to experiment. This range of behaviour is also shown to be manifest strongly in single-particle dynamics and electron transport through each dot. |
---|