Ca2+ and synaptic plasticity
The induction and maintenance of synaptic plasticity is well established to be a Ca2+-dependent process. The use of fluorescent imaging to monitor changes [Ca2+]i in neurones has revealed a diverse array of signaling patterns across the different compartments of the cell. The Ca2+ signals within the...
Main Authors: | , , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
2005
|
Summary: | The induction and maintenance of synaptic plasticity is well established to be a Ca2+-dependent process. The use of fluorescent imaging to monitor changes [Ca2+]i in neurones has revealed a diverse array of signaling patterns across the different compartments of the cell. The Ca2+ signals within these compartments are generated by voltage or ligand-gated Ca2+ influx, and release from intracellular stores. The changes in [Ca2+]i are directly linked to the activity of the neurone, thus a neurone's input and output is translated into a dynamic Ca2+ code. Despite considerable progress in measuring this code much still remains to be determined in order to understand how the code is interpreted by the Ca2+ sensors that underlie the induction of compartment-specific plastic changes. © 2005 Published by Elsevier Ltd. |
---|