Certifiers make neural networks vulnerable to availability attacks
To achieve reliable, robust, and safe AI systems, it is vital to implement fallback strategies when AI predictions cannot be trusted. Certifiers for neural networks are a reliable way to check the robustness of these predictions. They guarantee for some predictions that a certain class of manipulati...
主要な著者: | Lorenz, T, Kwiatkowska, M, Fritz, M |
---|---|
フォーマット: | Conference item |
言語: | English |
出版事項: |
Association for Computing Machinery
2023
|
類似資料
-
FullCert: deterministic end-to-end certification for training and inference of neural networks
著者:: Lorenz, T, 等
出版事項: (2024) -
Certified Robustness to Text Adversarial Attacks by Randomized [MASK]
著者:: Jiehang Zeng, 等
出版事項: (2023-06-01) -
Attack Vulnerability of Network Controllability.
著者:: Zhe-Ming Lu, 等
出版事項: (2016-01-01) -
Bayesian inference with certifiable adversarial robustness
著者:: Wicker, M, 等
出版事項: (2021) -
Vulnerability analysis on noise-injection based hardware attack on deep neural networks
著者:: Liu, Wenye, 等
出版事項: (2020)