Certifiers make neural networks vulnerable to availability attacks
To achieve reliable, robust, and safe AI systems, it is vital to implement fallback strategies when AI predictions cannot be trusted. Certifiers for neural networks are a reliable way to check the robustness of these predictions. They guarantee for some predictions that a certain class of manipulati...
المؤلفون الرئيسيون: | Lorenz, T, Kwiatkowska, M, Fritz, M |
---|---|
التنسيق: | Conference item |
اللغة: | English |
منشور في: |
Association for Computing Machinery
2023
|
مواد مشابهة
-
FullCert: deterministic end-to-end certification for training and inference of neural networks
حسب: Lorenz, T, وآخرون
منشور في: (2024) -
Certified Robustness to Text Adversarial Attacks by Randomized [MASK]
حسب: Jiehang Zeng, وآخرون
منشور في: (2023-06-01) -
Attack Vulnerability of Network Controllability.
حسب: Zhe-Ming Lu, وآخرون
منشور في: (2016-01-01) -
Bayesian inference with certifiable adversarial robustness
حسب: Wicker, M, وآخرون
منشور في: (2021) -
Vulnerability analysis on noise-injection based hardware attack on deep neural networks
حسب: Liu, Wenye, وآخرون
منشور في: (2020)