Certifiers make neural networks vulnerable to availability attacks
To achieve reliable, robust, and safe AI systems, it is vital to implement fallback strategies when AI predictions cannot be trusted. Certifiers for neural networks are a reliable way to check the robustness of these predictions. They guarantee for some predictions that a certain class of manipulati...
Main Authors: | Lorenz, T, Kwiatkowska, M, Fritz, M |
---|---|
פורמט: | Conference item |
שפה: | English |
יצא לאור: |
Association for Computing Machinery
2023
|
פריטים דומים
-
FullCert: deterministic end-to-end certification for training and inference of neural networks
מאת: Lorenz, T, et al.
יצא לאור: (2024) -
Certified Robustness to Text Adversarial Attacks by Randomized [MASK]
מאת: Jiehang Zeng, et al.
יצא לאור: (2023-06-01) -
Attack Vulnerability of Network Controllability.
מאת: Zhe-Ming Lu, et al.
יצא לאור: (2016-01-01) -
Bayesian inference with certifiable adversarial robustness
מאת: Wicker, M, et al.
יצא לאור: (2021) -
Vulnerability analysis on noise-injection based hardware attack on deep neural networks
מאת: Liu, Wenye, et al.
יצא לאור: (2020)