Certifiers make neural networks vulnerable to availability attacks
To achieve reliable, robust, and safe AI systems, it is vital to implement fallback strategies when AI predictions cannot be trusted. Certifiers for neural networks are a reliable way to check the robustness of these predictions. They guarantee for some predictions that a certain class of manipulati...
Үндсэн зохиолчид: | Lorenz, T, Kwiatkowska, M, Fritz, M |
---|---|
Формат: | Conference item |
Хэл сонгох: | English |
Хэвлэсэн: |
Association for Computing Machinery
2023
|
Ижил төстэй зүйлс
Ижил төстэй зүйлс
-
FullCert: deterministic end-to-end certification for training and inference of neural networks
-н: Lorenz, T, зэрэг
Хэвлэсэн: (2024) -
Certified Robustness to Text Adversarial Attacks by Randomized [MASK]
-н: Jiehang Zeng, зэрэг
Хэвлэсэн: (2023-06-01) -
Attack Vulnerability of Network Controllability.
-н: Zhe-Ming Lu, зэрэг
Хэвлэсэн: (2016-01-01) -
Bayesian inference with certifiable adversarial robustness
-н: Wicker, M, зэрэг
Хэвлэсэн: (2021) -
Vulnerability analysis on noise-injection based hardware attack on deep neural networks
-н: Liu, Wenye, зэрэг
Хэвлэсэн: (2020)