Certifiers make neural networks vulnerable to availability attacks
To achieve reliable, robust, and safe AI systems, it is vital to implement fallback strategies when AI predictions cannot be trusted. Certifiers for neural networks are a reliable way to check the robustness of these predictions. They guarantee for some predictions that a certain class of manipulati...
Автори: | Lorenz, T, Kwiatkowska, M, Fritz, M |
---|---|
Формат: | Conference item |
Мова: | English |
Опубліковано: |
Association for Computing Machinery
2023
|
Схожі ресурси
Схожі ресурси
-
FullCert: deterministic end-to-end certification for training and inference of neural networks
за авторством: Lorenz, T, та інші
Опубліковано: (2024) -
Certified Robustness to Text Adversarial Attacks by Randomized [MASK]
за авторством: Jiehang Zeng, та інші
Опубліковано: (2023-06-01) -
Attack Vulnerability of Network Controllability.
за авторством: Zhe-Ming Lu, та інші
Опубліковано: (2016-01-01) -
Bayesian inference with certifiable adversarial robustness
за авторством: Wicker, M, та інші
Опубліковано: (2021) -
Vulnerability analysis on noise-injection based hardware attack on deep neural networks
за авторством: Liu, Wenye, та інші
Опубліковано: (2020)