Classical non-relativistic fractons

We initiate the study of the classical mechanics of nonrelativistic fractons in its simplest setting—that of identical one-dimensional particles with local Hamiltonians characterized by a conserved dipole moment in addition to the usual symmetries of space and time translation invariance. We introdu...

Full description

Bibliographic Details
Main Authors: Prakash, A, Goriely, A, Sondhi, SL
Format: Journal article
Language:English
Published: American Physical Society 2024
Description
Summary:We initiate the study of the classical mechanics of nonrelativistic fractons in its simplest setting—that of identical one-dimensional particles with local Hamiltonians characterized by a conserved dipole moment in addition to the usual symmetries of space and time translation invariance. We introduce a family of models and study the N -body problem for them. We find that locality leads to a “Machian” dynamics in which a given particle exhibits finite inertia only if within a specified distance of another particle. For well-separated particles, this dynamics leads to immobility, much as for quantum models of fractons discussed before. For two or more particles within inertial reach of each other at the start of motion, we obtain an interesting interplay of inertia and interactions. Specifically, for a solvable “inertia only” model of fractons, we find that two particles always become immobile at long times. Remarkably, three particles generically evolve to a late time state with one immobile particle and two oscillating about a common center of mass with generalizations of such “Machian clusters” for N>3. Interestingly, these Machian clusters exhibit physical limit cycles in a Hamiltonian system even though mathematical limit cycles are forbidden by Liouville's theorem.