Continual learning for efficient machine learning
<p>Deep learning has enjoyed tremendous success over the last decade, but the training of practically useful deep models remains highly inefficient both in terms of the number of weight updates and training samples. To address one aspect of these issues, this thesis studies the continual learn...
Auteur principal: | Chaudhry, A |
---|---|
Autres auteurs: | Dokania, P |
Format: | Thèse |
Langue: | English |
Publié: |
2020
|
Sujets: |
Documents similaires
-
HANDBOOK OF MACHINE LEARNING.
par: Marwala, Tshilidzi, 1971-, author 632768, et autres
Publié: (2020) -
Multi-objective machine learning /
par: Jin, Yaochu, 1966-
Publié: (2006) -
Machine learning of inductive bias/
par: 422050 Utgoff, Paul E.
Publié: (1986) -
Machine learning : paradigms and methods/
par: Carbonell, J. G.
Publié: (1990) -
Discrete representations of continuous data using deep learning and clustering
par: Mahon, L
Publié: (2022)