Heparin binding epidermal growth factor in renal ischaemia/reperfusion injury.

The epidermal growth factor (EGF) receptor and its ligands are crucially involved in the renal response to ischaemia. We studied the heparin binding-epidermal growth factor (HB-EGF), a major ligand for the EGF receptor, in experimental and human ischaemia/reperfusion injury (IRI). HB-EGF mRNA and pr...

Full description

Bibliographic Details
Main Authors: Mulder, G, Nijboer, W, Seelen, M, Sandovici, M, Bos, E, Melenhorst, W, Trzpis, M, Kloosterhuis, N, Visser, L, Henning, R, Leuvenink, H, Ploeg, R, Sunnarborg, S, van Goor, H
Format: Journal article
Language:English
Published: 2010
Description
Summary:The epidermal growth factor (EGF) receptor and its ligands are crucially involved in the renal response to ischaemia. We studied the heparin binding-epidermal growth factor (HB-EGF), a major ligand for the EGF receptor, in experimental and human ischaemia/reperfusion injury (IRI). HB-EGF mRNA and protein expression was studied in rat kidneys and cultured human tubular (HK-2) cells that were subjected to IRI and in human donor kidneys during transplantation. The effect of EGF receptor inhibition was investigated in vivo and in vitro. Furthermore, urinary HB-EGF protein excretion was studied after renal transplantation. Finally, HB-EGF KO and WT mice were subjected to IRI to study the role of HB-EGF in renal injury. HB-EGF mRNA was significantly up-regulated in the early phase of IRI in rats, cells, and human donor biopsies. Treatment with PKI-166 reduces macrophage accumulation and interstitial alpha-SMA in the early phase of IRI in rats. In vitro, PKI-166 causes a marked reduction in HB-EGF-induced cellular proliferation. Urinary HB-EGF is increased after transplantation compared with control urines from healthy subjects. HB-EGF KO mice subjected to IRI revealed significantly less morphological damage after IRI, compared with WT mice. We conclude that IRI results in early induction of HB-EGF mRNA and protein in vivo and in vitro. Absence of HB-EGF and inhibition of the EGF receptor in the early phase of IRI has protective effects, suggesting a modulating role for HB-EGF.