Rao-blackwellised particle filtering via data augmentation

In this paper, we extend the Rao-Blackwellised particle filtering method t o more complex hybrid models consisting of Gaussian latent variables and discrete observations. This is accomplished by augmenting the models with artificial variables that enable us to apply Rao-Blackwellisation. Other impro...

Description complète

Détails bibliographiques
Auteurs principaux: Andrieu, C, De Freitas, N, Doucet, A
Format: Conference item
Publié: Neural information processing systems foundation 2002
_version_ 1826280614083428352
author Andrieu, C
De Freitas, N
Doucet, A
author_facet Andrieu, C
De Freitas, N
Doucet, A
author_sort Andrieu, C
collection OXFORD
description In this paper, we extend the Rao-Blackwellised particle filtering method t o more complex hybrid models consisting of Gaussian latent variables and discrete observations. This is accomplished by augmenting the models with artificial variables that enable us to apply Rao-Blackwellisation. Other improvements include the design of an optimal importance proposal distribution and being able to swap the sampling an selection steps to handle out liers. We focus on sequent ial binary classifiers t hat consist of linear- combinations of basis functions, whose coefficients evolve according t o a Gaussian smoothness prior. Our results show significant improvements.
first_indexed 2024-03-07T00:16:19Z
format Conference item
id oxford-uuid:7af73b5e-34f9-4326-8f5f-7fdf6fa0242a
institution University of Oxford
last_indexed 2024-03-07T00:16:19Z
publishDate 2002
publisher Neural information processing systems foundation
record_format dspace
spelling oxford-uuid:7af73b5e-34f9-4326-8f5f-7fdf6fa0242a2022-03-26T20:47:35ZRao-blackwellised particle filtering via data augmentationConference itemhttp://purl.org/coar/resource_type/c_5794uuid:7af73b5e-34f9-4326-8f5f-7fdf6fa0242aSymplectic Elements at OxfordNeural information processing systems foundation2002Andrieu, CDe Freitas, NDoucet, AIn this paper, we extend the Rao-Blackwellised particle filtering method t o more complex hybrid models consisting of Gaussian latent variables and discrete observations. This is accomplished by augmenting the models with artificial variables that enable us to apply Rao-Blackwellisation. Other improvements include the design of an optimal importance proposal distribution and being able to swap the sampling an selection steps to handle out liers. We focus on sequent ial binary classifiers t hat consist of linear- combinations of basis functions, whose coefficients evolve according t o a Gaussian smoothness prior. Our results show significant improvements.
spellingShingle Andrieu, C
De Freitas, N
Doucet, A
Rao-blackwellised particle filtering via data augmentation
title Rao-blackwellised particle filtering via data augmentation
title_full Rao-blackwellised particle filtering via data augmentation
title_fullStr Rao-blackwellised particle filtering via data augmentation
title_full_unstemmed Rao-blackwellised particle filtering via data augmentation
title_short Rao-blackwellised particle filtering via data augmentation
title_sort rao blackwellised particle filtering via data augmentation
work_keys_str_mv AT andrieuc raoblackwellisedparticlefilteringviadataaugmentation
AT defreitasn raoblackwellisedparticlefilteringviadataaugmentation
AT douceta raoblackwellisedparticlefilteringviadataaugmentation