Force platform recordings in the diagnosis of primary orthostatic tremor.

Primary orthostatic tremor (OT) consists of rhythmical muscle contractions at a frequency of around 16 Hz, causing discomfort and/or unsteadiness while standing. Diagnosis has hitherto relied on recording Electromyography (EMG) from affected muscles. The main aim of this study was to see if the char...

Full description

Bibliographic Details
Main Authors: Yarrow, K, Brown, P, Gresty, M, Bronstein, A
Format: Journal article
Language:English
Published: 2001
Description
Summary:Primary orthostatic tremor (OT) consists of rhythmical muscle contractions at a frequency of around 16 Hz, causing discomfort and/or unsteadiness while standing. Diagnosis has hitherto relied on recording Electromyography (EMG) from affected muscles. The main aim of this study was to see if the characteristic postural tremor in OT can be identified with force platforms. We also quantified postural sway in OT patients to assess their degree of objective unsteadiness. Finally, we investigated the time relations between bursts of activity in the various affected muscle groups. Subjects stood on a force platform with concurrent multichannel surface EMG recordings from the lower limbs. Seven patients with clinical and EMG diagnosis of OT were examined and the force platform data compared with those of 21 other neurological patients with postural tremor and eight normal controls. All OT patients had high frequency peaks in power spectra of posturography and EMG recordings (12--16 Hz). No such high frequency activity was evident in patients with Parkinson's disease, cerebellar degenerations, essential tremor or in healthy controls. Additionally, OT patients showed increased sway at low frequencies relative to normal controls, suggesting that the unsteadiness reported by OT patients is at least partly due to increased postural sway. Examination of EMG timing showed fixed patterns of muscle activation when maintaining a quiet stance within but not across OT patients. These data show a high correlation between EMG and posturography and confirm that OT may be diagnosed using short epochs of force platform recordings.