Unsupervised learning of landmarks by descriptor vector exchange
Equivariance to random image transformations is an effective method to learn landmarks of object categories, such as the eyes and the nose in faces, without manual supervision. However, this method does not explicitly guarantee that the learned landmarks are consistent with changes between different...
Hlavní autoři: | Thewlis, J, Albanie, S, Bilen, H, Vedaldi, A |
---|---|
Médium: | Conference item |
Jazyk: | English |
Vydáno: |
IEEE
2020
|
Podobné jednotky
-
Unsupervised learning of object landmarks by factorized spatial embeddings
Autor: Thewlis, J, a další
Vydáno: (2017) -
Modelling and unsupervised learning of symmetric deformable object categories
Autor: Thewlis, J, a další
Vydáno: (2018) -
Unsupervised learning of object frames by dense equivariant image labelling
Autor: Thewlis, J, a další
Vydáno: (2017) -
Unsupervised learning of object landmarks through conditional image generation
Autor: Jakab, T, a další
Vydáno: (2018) -
Learning grimaces by watching TV
Autor: Albanie, S, a další
Vydáno: (2016)