Unsupervised learning of landmarks by descriptor vector exchange
Equivariance to random image transformations is an effective method to learn landmarks of object categories, such as the eyes and the nose in faces, without manual supervision. However, this method does not explicitly guarantee that the learned landmarks are consistent with changes between different...
Автори: | Thewlis, J, Albanie, S, Bilen, H, Vedaldi, A |
---|---|
Формат: | Conference item |
Мова: | English |
Опубліковано: |
IEEE
2020
|
Схожі ресурси
Схожі ресурси
-
Unsupervised learning of object landmarks by factorized spatial embeddings
за авторством: Thewlis, J, та інші
Опубліковано: (2017) -
Modelling and unsupervised learning of symmetric deformable object categories
за авторством: Thewlis, J, та інші
Опубліковано: (2018) -
Unsupervised learning of object frames by dense equivariant image labelling
за авторством: Thewlis, J, та інші
Опубліковано: (2017) -
Unsupervised learning of object landmarks through conditional image generation
за авторством: Jakab, T, та інші
Опубліковано: (2018) -
Learning grimaces by watching TV
за авторством: Albanie, S, та інші
Опубліковано: (2016)