Presburger arithmetic with stars, rational subsets of graph groups, and nested zero tests
We study the computational complexity of existential Presburger arithmetic with (possibly nested occurrences of) a Kleene-star operator. In addition to being a natural extension of Presburger arithmetic, our investigation is motivated by two other decision problems. The first problem is the rational...
Auteurs principaux: | Haase, C, Zetzsche, G |
---|---|
Format: | Conference item |
Publié: |
IEEE
2019
|
Documents similaires
-
Quantifier elimination for counting extensions of Presburger arithmetic
par: Chistikov, D, et autres
Publié: (2022) -
Super-exponential Complexity of Presburger Arithmetic
par: Fischer, Michael J., et autres
Publié: (2023) -
On the decidability of Presburger arithmetic expanded with powers
par: Karimov, T, et autres
Publié: (2025) -
The complexity of Presburger arithmetic with power or powers
par: Benedikt, M, et autres
Publié: (2023) -
Presburger Arithmetic with algebraic scalar multiplications
par: Philipp Hieronymi, et autres
Publié: (2021-07-01)