Unsupervised deep learning identifies semantic disentanglement in single inferotemporal face patch neurons
In order to better understand how the brain perceives faces, it is important to know what objective drives learning in the ventral visual stream. To answer this question, we model neural responses to faces in the macaque inferotemporal (IT) cortex with a deep self-supervised generative model, β-VAE,...
المؤلفون الرئيسيون: | Higgins, I, Chang, L, Langston, V, Hassabis, D, Summerfield, C, Tsao, D, Botvinick, M |
---|---|
التنسيق: | Journal article |
اللغة: | English |
منشور في: |
Springer Nature
2021
|
مواد مشابهة
-
Unsupervised deep learning identifies semantic disentanglement in single inferotemporal face patch neurons
حسب: Irina Higgins, وآخرون
منشور في: (2021-11-01) -
Shape Similarity, Better than Semantic Membership, Accounts for the Structure of Visual Object Representations in a Population of Monkey Inferotemporal Neurons
حسب: Baldassi, Carlo, وآخرون
منشور في: (2013) -
Visual identification following inferotemporal ablation in the monkey.
حسب: Gaffan, D, وآخرون
منشور في: (1986) -
Disentangling the latent space of GANs for semantic face editing
حسب: Yongjie Niu, وآخرون
منشور في: (2023-01-01) -
Disentangling the latent space of GANs for semantic face editing.
حسب: Yongjie Niu, وآخرون
منشور في: (2023-01-01)