Unsupervised deep learning identifies semantic disentanglement in single inferotemporal face patch neurons
In order to better understand how the brain perceives faces, it is important to know what objective drives learning in the ventral visual stream. To answer this question, we model neural responses to faces in the macaque inferotemporal (IT) cortex with a deep self-supervised generative model, β-VAE,...
Hlavní autoři: | Higgins, I, Chang, L, Langston, V, Hassabis, D, Summerfield, C, Tsao, D, Botvinick, M |
---|---|
Médium: | Journal article |
Jazyk: | English |
Vydáno: |
Springer Nature
2021
|
Podobné jednotky
-
Unsupervised deep learning identifies semantic disentanglement in single inferotemporal face patch neurons
Autor: Irina Higgins, a další
Vydáno: (2021-11-01) -
Shape Similarity, Better than Semantic Membership, Accounts for the Structure of Visual Object Representations in a Population of Monkey Inferotemporal Neurons
Autor: Baldassi, Carlo, a další
Vydáno: (2013) -
Visual identification following inferotemporal ablation in the monkey.
Autor: Gaffan, D, a další
Vydáno: (1986) -
Disentangling the latent space of GANs for semantic face editing
Autor: Yongjie Niu, a další
Vydáno: (2023-01-01) -
Disentangling the latent space of GANs for semantic face editing.
Autor: Yongjie Niu, a další
Vydáno: (2023-01-01)