Unsupervised deep learning identifies semantic disentanglement in single inferotemporal face patch neurons
In order to better understand how the brain perceives faces, it is important to know what objective drives learning in the ventral visual stream. To answer this question, we model neural responses to faces in the macaque inferotemporal (IT) cortex with a deep self-supervised generative model, β-VAE,...
主要な著者: | Higgins, I, Chang, L, Langston, V, Hassabis, D, Summerfield, C, Tsao, D, Botvinick, M |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
Springer Nature
2021
|
類似資料
-
Unsupervised deep learning identifies semantic disentanglement in single inferotemporal face patch neurons
著者:: Irina Higgins, 等
出版事項: (2021-11-01) -
Shape Similarity, Better than Semantic Membership, Accounts for the Structure of Visual Object Representations in a Population of Monkey Inferotemporal Neurons
著者:: Baldassi, Carlo, 等
出版事項: (2013) -
Visual identification following inferotemporal ablation in the monkey.
著者:: Gaffan, D, 等
出版事項: (1986) -
Disentangling the latent space of GANs for semantic face editing
著者:: Yongjie Niu, 等
出版事項: (2023-01-01) -
Disentangling the latent space of GANs for semantic face editing.
著者:: Yongjie Niu, 等
出版事項: (2023-01-01)