Unsupervised deep learning identifies semantic disentanglement in single inferotemporal face patch neurons
In order to better understand how the brain perceives faces, it is important to know what objective drives learning in the ventral visual stream. To answer this question, we model neural responses to faces in the macaque inferotemporal (IT) cortex with a deep self-supervised generative model, β-VAE,...
Үндсэн зохиолчид: | Higgins, I, Chang, L, Langston, V, Hassabis, D, Summerfield, C, Tsao, D, Botvinick, M |
---|---|
Формат: | Journal article |
Хэл сонгох: | English |
Хэвлэсэн: |
Springer Nature
2021
|
Ижил төстэй зүйлс
Ижил төстэй зүйлс
-
Unsupervised deep learning identifies semantic disentanglement in single inferotemporal face patch neurons
-н: Irina Higgins, зэрэг
Хэвлэсэн: (2021-11-01) -
Shape Similarity, Better than Semantic Membership, Accounts for the Structure of Visual Object Representations in a Population of Monkey Inferotemporal Neurons
-н: Baldassi, Carlo, зэрэг
Хэвлэсэн: (2013) -
Visual identification following inferotemporal ablation in the monkey.
-н: Gaffan, D, зэрэг
Хэвлэсэн: (1986) -
Disentangling the latent space of GANs for semantic face editing
-н: Yongjie Niu, зэрэг
Хэвлэсэн: (2023-01-01) -
Disentangling the latent space of GANs for semantic face editing.
-н: Yongjie Niu, зэрэг
Хэвлэсэн: (2023-01-01)