Unsupervised deep learning identifies semantic disentanglement in single inferotemporal face patch neurons
In order to better understand how the brain perceives faces, it is important to know what objective drives learning in the ventral visual stream. To answer this question, we model neural responses to faces in the macaque inferotemporal (IT) cortex with a deep self-supervised generative model, β-VAE,...
Main Authors: | Higgins, I, Chang, L, Langston, V, Hassabis, D, Summerfield, C, Tsao, D, Botvinick, M |
---|---|
Formato: | Journal article |
Idioma: | English |
Publicado em: |
Springer Nature
2021
|
Registos relacionados
-
Unsupervised deep learning identifies semantic disentanglement in single inferotemporal face patch neurons
Por: Irina Higgins, et al.
Publicado em: (2021-11-01) -
Shape Similarity, Better than Semantic Membership, Accounts for the Structure of Visual Object Representations in a Population of Monkey Inferotemporal Neurons
Por: Baldassi, Carlo, et al.
Publicado em: (2013) -
Visual identification following inferotemporal ablation in the monkey.
Por: Gaffan, D, et al.
Publicado em: (1986) -
Disentangling the latent space of GANs for semantic face editing
Por: Yongjie Niu, et al.
Publicado em: (2023-01-01) -
Disentangling the latent space of GANs for semantic face editing.
Por: Yongjie Niu, et al.
Publicado em: (2023-01-01)