Unsupervised deep learning identifies semantic disentanglement in single inferotemporal face patch neurons
In order to better understand how the brain perceives faces, it is important to know what objective drives learning in the ventral visual stream. To answer this question, we model neural responses to faces in the macaque inferotemporal (IT) cortex with a deep self-supervised generative model, β-VAE,...
Главные авторы: | Higgins, I, Chang, L, Langston, V, Hassabis, D, Summerfield, C, Tsao, D, Botvinick, M |
---|---|
Формат: | Journal article |
Язык: | English |
Опубликовано: |
Springer Nature
2021
|
Схожие документы
-
Unsupervised deep learning identifies semantic disentanglement in single inferotemporal face patch neurons
по: Irina Higgins, и др.
Опубликовано: (2021-11-01) -
Shape Similarity, Better than Semantic Membership, Accounts for the Structure of Visual Object Representations in a Population of Monkey Inferotemporal Neurons
по: Baldassi, Carlo, и др.
Опубликовано: (2013) -
Visual identification following inferotemporal ablation in the monkey.
по: Gaffan, D, и др.
Опубликовано: (1986) -
Disentangling the latent space of GANs for semantic face editing
по: Yongjie Niu, и др.
Опубликовано: (2023-01-01) -
Disentangling the latent space of GANs for semantic face editing.
по: Yongjie Niu, и др.
Опубликовано: (2023-01-01)