Unsupervised deep learning identifies semantic disentanglement in single inferotemporal face patch neurons
In order to better understand how the brain perceives faces, it is important to know what objective drives learning in the ventral visual stream. To answer this question, we model neural responses to faces in the macaque inferotemporal (IT) cortex with a deep self-supervised generative model, β-VAE,...
Автори: | Higgins, I, Chang, L, Langston, V, Hassabis, D, Summerfield, C, Tsao, D, Botvinick, M |
---|---|
Формат: | Journal article |
Мова: | English |
Опубліковано: |
Springer Nature
2021
|
Схожі ресурси
Схожі ресурси
-
Unsupervised deep learning identifies semantic disentanglement in single inferotemporal face patch neurons
за авторством: Irina Higgins, та інші
Опубліковано: (2021-11-01) -
Shape Similarity, Better than Semantic Membership, Accounts for the Structure of Visual Object Representations in a Population of Monkey Inferotemporal Neurons
за авторством: Baldassi, Carlo, та інші
Опубліковано: (2013) -
Visual identification following inferotemporal ablation in the monkey.
за авторством: Gaffan, D, та інші
Опубліковано: (1986) -
Disentangling the latent space of GANs for semantic face editing
за авторством: Yongjie Niu, та інші
Опубліковано: (2023-01-01) -
Disentangling the latent space of GANs for semantic face editing.
за авторством: Yongjie Niu, та інші
Опубліковано: (2023-01-01)