Unsupervised deep learning identifies semantic disentanglement in single inferotemporal face patch neurons
In order to better understand how the brain perceives faces, it is important to know what objective drives learning in the ventral visual stream. To answer this question, we model neural responses to faces in the macaque inferotemporal (IT) cortex with a deep self-supervised generative model, β-VAE,...
Những tác giả chính: | Higgins, I, Chang, L, Langston, V, Hassabis, D, Summerfield, C, Tsao, D, Botvinick, M |
---|---|
Định dạng: | Journal article |
Ngôn ngữ: | English |
Được phát hành: |
Springer Nature
2021
|
Những quyển sách tương tự
-
Unsupervised deep learning identifies semantic disentanglement in single inferotemporal face patch neurons
Bằng: Irina Higgins, et al.
Được phát hành: (2021-11-01) -
Shape Similarity, Better than Semantic Membership, Accounts for the Structure of Visual Object Representations in a Population of Monkey Inferotemporal Neurons
Bằng: Baldassi, Carlo, et al.
Được phát hành: (2013) -
Visual identification following inferotemporal ablation in the monkey.
Bằng: Gaffan, D, et al.
Được phát hành: (1986) -
Disentangling the latent space of GANs for semantic face editing
Bằng: Yongjie Niu, et al.
Được phát hành: (2023-01-01) -
Disentangling the latent space of GANs for semantic face editing.
Bằng: Yongjie Niu, et al.
Được phát hành: (2023-01-01)