Gaussian process latent variable models for human pose estimation
We describe a method for recovering 3D human body pose from silhouettes. Our model is based on learning a latent space using the Gaussian Process Latent Variable Model (GP-LVM) [1] encapsulating both pose and silhouette features Our method is generative, this allows us to model the ambiguities of a...
Hlavní autoři: | Ek, CH, Torr, PHS, Lawrence, ND |
---|---|
Médium: | Conference item |
Jazyk: | English |
Vydáno: |
Springer
2008
|
Podobné jednotky
-
Ambiguity modeling in latent spaces
Autor: Ek, CH, a další
Vydáno: (2008) -
PoseField: an efficient mean-field based method for joint estimation of human pose, segmentation, and depth
Autor: Vineet, V, a další
Vydáno: (2013) -
Surface Approximation by Means of Gaussian Process Latent Variable Models and Line Element Geometry
Autor: Ivan De Boi, a další
Vydáno: (2023-01-01) -
Simultaneous segmentation and pose estimation of humans using dynamic graph cuts
Autor: Kohli, P, a další
Vydáno: (2008) -
Discriminative Gaussian Process Latent Variable Model for Classification
Autor: Urtasun, Raquel, a další
Vydáno: (2007)