Gaussian process latent variable models for human pose estimation
We describe a method for recovering 3D human body pose from silhouettes. Our model is based on learning a latent space using the Gaussian Process Latent Variable Model (GP-LVM) [1] encapsulating both pose and silhouette features Our method is generative, this allows us to model the ambiguities of a...
Asıl Yazarlar: | Ek, CH, Torr, PHS, Lawrence, ND |
---|---|
Materyal Türü: | Conference item |
Dil: | English |
Baskı/Yayın Bilgisi: |
Springer
2008
|
Benzer Materyaller
-
Ambiguity modeling in latent spaces
Yazar:: Ek, CH, ve diğerleri
Baskı/Yayın Bilgisi: (2008) -
PoseField: an efficient mean-field based method for joint estimation of human pose, segmentation, and depth
Yazar:: Vineet, V, ve diğerleri
Baskı/Yayın Bilgisi: (2013) -
Surface Approximation by Means of Gaussian Process Latent Variable Models and Line Element Geometry
Yazar:: Ivan De Boi, ve diğerleri
Baskı/Yayın Bilgisi: (2023-01-01) -
Simultaneous segmentation and pose estimation of humans using dynamic graph cuts
Yazar:: Kohli, P, ve diğerleri
Baskı/Yayın Bilgisi: (2008) -
POSECUT: simultaneous segmentation and 3d pose estimation of humans using dynamic graph-cuts
Yazar:: Bray, M, ve diğerleri
Baskı/Yayın Bilgisi: (2006)