Modulation of long-range connectivity patterns via frequency-specific stimulation of human cortex

There is increasing interest in how the phase of local oscillatory activity within a brain area determines the long-range functional connectivity of that area. For example, increasing convergent evidence from a range of methodologies suggests that beta (20 Hz) oscillations may play a vital role in t...

Full description

Bibliographic Details
Main Authors: Weinrich, C, Brittain, J, Nowak, M, Salimi-Khorshidi, R, Brown, P, Stagg, C
Format: Journal article
Language:English
Published: Cell Press 2017
_version_ 1797077590052175872
author Weinrich, C
Brittain, J
Nowak, M
Salimi-Khorshidi, R
Brown, P
Stagg, C
author_facet Weinrich, C
Brittain, J
Nowak, M
Salimi-Khorshidi, R
Brown, P
Stagg, C
author_sort Weinrich, C
collection OXFORD
description There is increasing interest in how the phase of local oscillatory activity within a brain area determines the long-range functional connectivity of that area. For example, increasing convergent evidence from a range of methodologies suggests that beta (20 Hz) oscillations may play a vital role in the function of the motor system [1-5]. The "communication through coherence" hypothesis posits that the precise phase of coherent oscillations in network nodes is a determinant of successful communication between them [6, 7]. Here we set out to determine whether oscillatory activity in the beta band serves to support this theory within the cortical motor network in vivo. We combined non-invasive transcranial alternating-current stimulation (tACS) [8-12] with resting-state functional MRI (fMRI) [13] to follow both changes in local activity and long-range connectivity, determined by inter-areal blood-oxygen-level-dependent (BOLD) signal correlation, as a proxy for communication in the human cortex. Twelve healthy subjects participated in three fMRI scans with 20 Hz, 5 Hz, or sham tACS applied separately on each scan. Transcranial magnetic stimulation (TMS) at beta frequency has previously been shown to increase local activity in the beta band [14] and to modulate long-range connectivity within the default mode network [15]. We demonstrated that beta-frequency tACS significantly changed the connectivity pattern of the stimulated primary motor cortex (M1), without changing overall local activity or network connectivity. This finding is supported by a simple phase-precession model, which demonstrates the plausibility of the results and provides emergent predictions that are consistent with our empirical findings. These findings therefore inform our understanding of how local oscillatory activity may underpin network connectivity.
first_indexed 2024-03-07T00:20:18Z
format Journal article
id oxford-uuid:7c4d6fa7-b498-4184-b6d4-885d05eb16e8
institution University of Oxford
language English
last_indexed 2024-03-07T00:20:18Z
publishDate 2017
publisher Cell Press
record_format dspace
spelling oxford-uuid:7c4d6fa7-b498-4184-b6d4-885d05eb16e82022-03-26T20:56:13ZModulation of long-range connectivity patterns via frequency-specific stimulation of human cortexJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:7c4d6fa7-b498-4184-b6d4-885d05eb16e8EnglishSymplectic Elements at OxfordCell Press2017Weinrich, CBrittain, JNowak, MSalimi-Khorshidi, RBrown, PStagg, CThere is increasing interest in how the phase of local oscillatory activity within a brain area determines the long-range functional connectivity of that area. For example, increasing convergent evidence from a range of methodologies suggests that beta (20 Hz) oscillations may play a vital role in the function of the motor system [1-5]. The "communication through coherence" hypothesis posits that the precise phase of coherent oscillations in network nodes is a determinant of successful communication between them [6, 7]. Here we set out to determine whether oscillatory activity in the beta band serves to support this theory within the cortical motor network in vivo. We combined non-invasive transcranial alternating-current stimulation (tACS) [8-12] with resting-state functional MRI (fMRI) [13] to follow both changes in local activity and long-range connectivity, determined by inter-areal blood-oxygen-level-dependent (BOLD) signal correlation, as a proxy for communication in the human cortex. Twelve healthy subjects participated in three fMRI scans with 20 Hz, 5 Hz, or sham tACS applied separately on each scan. Transcranial magnetic stimulation (TMS) at beta frequency has previously been shown to increase local activity in the beta band [14] and to modulate long-range connectivity within the default mode network [15]. We demonstrated that beta-frequency tACS significantly changed the connectivity pattern of the stimulated primary motor cortex (M1), without changing overall local activity or network connectivity. This finding is supported by a simple phase-precession model, which demonstrates the plausibility of the results and provides emergent predictions that are consistent with our empirical findings. These findings therefore inform our understanding of how local oscillatory activity may underpin network connectivity.
spellingShingle Weinrich, C
Brittain, J
Nowak, M
Salimi-Khorshidi, R
Brown, P
Stagg, C
Modulation of long-range connectivity patterns via frequency-specific stimulation of human cortex
title Modulation of long-range connectivity patterns via frequency-specific stimulation of human cortex
title_full Modulation of long-range connectivity patterns via frequency-specific stimulation of human cortex
title_fullStr Modulation of long-range connectivity patterns via frequency-specific stimulation of human cortex
title_full_unstemmed Modulation of long-range connectivity patterns via frequency-specific stimulation of human cortex
title_short Modulation of long-range connectivity patterns via frequency-specific stimulation of human cortex
title_sort modulation of long range connectivity patterns via frequency specific stimulation of human cortex
work_keys_str_mv AT weinrichc modulationoflongrangeconnectivitypatternsviafrequencyspecificstimulationofhumancortex
AT brittainj modulationoflongrangeconnectivitypatternsviafrequencyspecificstimulationofhumancortex
AT nowakm modulationoflongrangeconnectivitypatternsviafrequencyspecificstimulationofhumancortex
AT salimikhorshidir modulationoflongrangeconnectivitypatternsviafrequencyspecificstimulationofhumancortex
AT brownp modulationoflongrangeconnectivitypatternsviafrequencyspecificstimulationofhumancortex
AT staggc modulationoflongrangeconnectivitypatternsviafrequencyspecificstimulationofhumancortex