Subgroups of direct products of limit groups

If $G_1,...,G_n$ are limit groups and $S\subset G_1\times...\times G_n$ is of type $\FP_n(\mathbb Q)$ then $S$ contains a subgroup of finite index that is itself a direct product of at most $n$ limit groups. This settles a question of Sela.

গ্রন্থ-পঞ্জীর বিবরন
প্রধান লেখক: Bridson, MR, Howie, J, Iii, C, Short, H
বিন্যাস: Journal article
প্রকাশিত: 2007
বিবরন
সংক্ষিপ্ত:If $G_1,...,G_n$ are limit groups and $S\subset G_1\times...\times G_n$ is of type $\FP_n(\mathbb Q)$ then $S$ contains a subgroup of finite index that is itself a direct product of at most $n$ limit groups. This settles a question of Sela.