Subgroups of direct products of limit groups
If $G_1,...,G_n$ are limit groups and $S\subset G_1\times...\times G_n$ is of type $\FP_n(\mathbb Q)$ then $S$ contains a subgroup of finite index that is itself a direct product of at most $n$ limit groups. This settles a question of Sela.
Autors principals: | Bridson, MR, Howie, J, Iii, C, Short, H |
---|---|
Format: | Journal article |
Publicat: |
2007
|
Ítems similars
-
Subgroups of direct products of limit groups
per: Bridson, M, et al.
Publicat: (2009) -
Subgroups of direct products of two limit groups
per: Bridson, MR, et al.
Publicat: (2007) -
Subgroups of direct products of two limit groups
per: Bridson, M, et al.
Publicat: (2005) -
The subgroups of direct products of surface groups
per: Bridson, M, et al.
Publicat: (2002) -
Subgroups of direct products of elementarily free groups
per: Bridson, M, et al.
Publicat: (2005)