Subgroups of direct products of limit groups
If $G_1,...,G_n$ are limit groups and $S\subset G_1\times...\times G_n$ is of type $\FP_n(\mathbb Q)$ then $S$ contains a subgroup of finite index that is itself a direct product of at most $n$ limit groups. This settles a question of Sela.
Päätekijät: | Bridson, MR, Howie, J, Iii, C, Short, H |
---|---|
Aineistotyyppi: | Journal article |
Julkaistu: |
2007
|
Samankaltaisia teoksia
-
Subgroups of direct products of limit groups
Tekijä: Bridson, M, et al.
Julkaistu: (2009) -
Subgroups of direct products of two limit groups
Tekijä: Bridson, MR, et al.
Julkaistu: (2007) -
Subgroups of direct products of two limit groups
Tekijä: Bridson, M, et al.
Julkaistu: (2005) -
The subgroups of direct products of surface groups
Tekijä: Bridson, M, et al.
Julkaistu: (2002) -
Subgroups of direct products of elementarily free groups
Tekijä: Bridson, M, et al.
Julkaistu: (2005)