Subgroups of direct products of limit groups
If $G_1,...,G_n$ are limit groups and $S\subset G_1\times...\times G_n$ is of type $\FP_n(\mathbb Q)$ then $S$ contains a subgroup of finite index that is itself a direct product of at most $n$ limit groups. This settles a question of Sela.
Príomhchruthaitheoirí: | Bridson, MR, Howie, J, Iii, C, Short, H |
---|---|
Formáid: | Journal article |
Foilsithe / Cruthaithe: |
2007
|
Míreanna comhchosúla
Míreanna comhchosúla
-
Subgroups of direct products of limit groups
de réir: Bridson, M, et al.
Foilsithe / Cruthaithe: (2009) -
Subgroups of direct products of two limit groups
de réir: Bridson, MR, et al.
Foilsithe / Cruthaithe: (2007) -
Subgroups of direct products of two limit groups
de réir: Bridson, M, et al.
Foilsithe / Cruthaithe: (2005) -
The subgroups of direct products of surface groups
de réir: Bridson, M, et al.
Foilsithe / Cruthaithe: (2002) -
Subgroups of direct products of elementarily free groups
de réir: Bridson, M, et al.
Foilsithe / Cruthaithe: (2005)