Microscopy cell counting and detection with fully convolutional regression networks
This paper concerns automated cell counting and detection in microscopy images. The approach we take is to use convolutional neural networks (CNNs) to regress a cell spatial density map across the image. This is applicable to situations where traditional single-cell segmentation-based methods do not...
Главные авторы: | Xie, W, Noble, J, Zisserman, A |
---|---|
Формат: | Journal article |
Опубликовано: |
Taylor and Francis
2016
|
Схожие документы
-
Microscopy cell counting with fully convolutional regression networks
по: Xie, W, и др.
Опубликовано: (2015) -
Nuclei Detection for 3D Microscopy With a Fully Convolutional Regression Network
по: Maryse Lapierre-Landry, и др.
Опубликовано: (2021-01-01) -
Count-ception: counting by fully convolutional redundant counting
по: Cohen, J, и др.
Опубликовано: (2018) -
Classification and counting of cells in brightfield microscopy images: an application of convolutional neural networks
по: E. K. G. D. Ferreira, и др.
Опубликовано: (2024-04-01) -
Detecting Lamellipodia in Epithelial Cell Clusters Using a Fully Convolutional Neural Network for Phase Contrast Microscopy Images
по: Grützmacher Simon, и др.
Опубликовано: (2018-09-01)