Pre-trained convolutional neural networks as feature extractors toward improved malaria parasite detection in thin blood smear images
Malaria is a blood disease caused by the Plasmodium parasites transmitted through the bite of female Anopheles mosquito. Microscopists commonly examine thick and thin blood smears to diagnose disease and compute parasitemia. However, their accuracy depends on smear quality and expertise in classifyi...
Auteurs principaux: | Rajaraman, S, Antani, S, Poostchi, M, Silamut, K, Hossain, M, Maude, R, Jaeger, S, Thoma, G |
---|---|
Format: | Journal article |
Langue: | English |
Publié: |
PeerJ
2018
|
Documents similaires
-
Pre-trained convolutional neural networks as feature extractors toward improved malaria parasite detection in thin blood smear images
par: Sivaramakrishnan Rajaraman, et autres
Publié: (2018-04-01) -
Understanding the learned behavior of customized convolutional neural networks toward malaria parasite detection in thin blood smear images
par: Rajaraman, S, et autres
Publié: (2018) -
Deep Learning for Smartphone-Based Malaria Parasite Detection in Thick Blood Smears
par: Yang, F, et autres
Publié: (2019) -
Performance evaluation of deep neural ensembles toward malaria parasite detection in thin-blood smear images
par: Sivaramakrishnan Rajaraman, et autres
Publié: (2019-05-01) -
Malaria parasite detection and cell counting for human and mouse using thin blood smear microscopy
par: Poostchi, M, et autres
Publié: (2018)